A New Kernel Direct Discriminant Analysis (KDDA) Algorithm for Face Recognition

نویسندگان

  • Xiaojun Wu
  • Josef Kittler
  • Jing-Yu Yang
  • Kieron Messer
  • Shitong Wang
چکیده

We propose a new kernel direct discriminant analysis (KDDA) algorithm in this paper. First, a recently advocated direct linear discriminant analysis (DLDA) algorithm is overviewed. Then the new KDDA algorithm is developed which can be considered as a kernel version of the DLDA algorithm. The design of the minimum distance classifier in the new kernel subspace is then discussed. The results of experiments on two well-known facial databases show the effectiveness of the proposed method in face recognition. The results of experiments also confirm that DLDA can be viewed as a special case of the proposed KDDA algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection By KDDA For SVM-Based MultiView Face Recognition

Applications such as Face Recognition (FR) that deal with high-dimensional data need a mapping technique that introduces representation of low-dimensional features with enhanced discriminatory power and a proper classifier, able to classify those complex features .Most of traditional Linear Discriminant Analysis (LDA) suffer from the disadvantage that their optimality criteria are not directly ...

متن کامل

Face Recognition by Cognitive Discriminant Features

Face recognition is still an active pattern analysis topic. Faces have already been treated as objects or textures, but human face recognition system takes a different approach in face recognition. People refer to faces by their most discriminant features. People usually describe faces in sentences like ``She's snub-nosed'' or ``he's got long nose'' or ``he's got round eyes'' and so like. These...

متن کامل

Face recognition using a kernel fractional-step discriminant analysis algorithm

Feature extraction is among the most important problems in face recognition sys-tems. In this paper, we propose an enhanced kernel discriminant analysis (KDA)algorithm called kernel fractional-step discriminant analysis (KFDA) for nonlinearfeature extraction and dimensionality reduction. Not only can this new algorithm,like other kernel methods, deal with nonlinearity requir...

متن کامل

Face recognition using kernel direct discriminant analysis algorithms

Techniques that can introduce low-dimensional feature representation with enhanced discriminatory power is of paramount importance in face recognition (FR) systems. It is well known that the distribution of face images, under a perceivable variation in viewpoint, illumination or facial expression, is highly nonlinear and complex. It is, therefore, not surprising that linear techniques, such as ...

متن کامل

A kernel machine based approach for multi-view face recognition

Techniques that can introduce low-dimensional feature representation with enhanced discriminatory power is of paramount importance in face recognition applications. It is well known that the distribution of face images, under a perceivable variation in viewpoint, illumination or facial expression, is highly nonlinear and complex. It is therefore, not surprising that linear techniques, such as t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004